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Abstract-The treatments of problems in continuum damage mechanics (COM) that appear in the
scientific literature are based on a number of more or less explicit assumptions. In this paper, these
assumptions are reformulated and shown to form a single axiomatic framework of both the "internal
variables" and the "multifield continuum" schemes: the fundamental features of both descriptions
are thus recognized and correlated with the general principles of mechanics. These developments
are based on the general theory of actions developed by Coleman and Owen (Coleman, B. D.
and Owen, D. R. (1974). A mathematical foundation for thermodynamics. Archives of Rational
Mechanical Analysis 54,1-104; (1975). On thermodynamics and elastic plastic materials. Archives
of Rational Mechanical Analysis 59, 25-51; (1977). On thermodynamics of semi-systems with
restrictions on the accessibility of states. Archives of Rational Mechanical Analysis 66, 173-181),
which is presented in Section 2 in a way slightly different from usual. Then, five axioms for COM
are introduced in Section 3, and related theorems and corollaries are proved. Finally, the Palmgren­
Miner's rule of fatigue damage and its limitations are reformulated in the context of the established
general framework. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Many usual models of continuum damage mechanics (CDM) are based on the internal
variable scheme (e.g., Bazant, 1986; Bazant and Pijauder-Cabot, 1988; Chen and Schreyer,
1994; Francfort and Marigo, 1993; Krajcinovic, 1985; 1989; Krajcinovic and Fonseka,
1981; Krajcinovic et al., 1993; Lemaitre, 1994; Lubarda and Krajcinovic, 1995; Pijauder­
Cabot and Banallal, 1993; Simo and Ju, 1987; Smyshlyaev and Willis, 1996). Such models
require: (a) the preventive choice of damage variables (Budianski and O'Connell, 1976;
Onat and Leckie, 1988; Lubarda and Krajcinovic, 1993; Woo and Li, 1994), (b) the choice
of an expression of the free energy compatible with the rules of thermodynamics and with
the axiom offrame indifference; (c) the introduction of kinetic equations which govern the
rate of the damage variables. In these works, the attention has been focused either on
the microscale (the microscopic structure of the body and the fluctuations around the
inhomogeneities of the stress and strain fields have been considered; e.g., Altus, 1991;
Krajcinovic et al. 1991 ; Kunin, 1993; Nemat-Nasser and Hori, 1993; Nemat-Nasser et al.
1993; Ostoja-Starzewski, 1993), on the macroscale or on the mesoscale. The existence of a
potential in the damage phenomenon has been considered acceptable for physical reasons
(Krajcinovic, 1989). A potential damage surface, in analogy with the plasticity theory, has
been used to establish criteria of damage growth (e.g., Lubarda and Krajcinovic, 1995).

A different point of view on the damage has been developed recently by using the
multifield continuum description (Augusti and Mariano, 1995, 1996; Mariano, 1995,
1996a). In this approach the microcrack state is described by a field that satisfies appropriate
balance equations. The introduction of an additional entropy flux in the Clausius-Duhem
inequality allows to establish consistent criteria of damage growth without using potential
damage surfaces. From a slightly different point of view, an analogous direction has been
followed by Markov (1995) and Fremond and Nedjar (1996): the numerical simulations
of the latter authors are a significant addition to the theoretical speculations about multifield
description.
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The aim of the present paper is to formulate in an explicit way the basic assumptions
under the models ofeither type, and moreover to show a single overall framework, in which
the fundamental features of the damage-independent of the specific rheological model
assumed-ean be easily recognized, together with their relation with the general principia
of mechanics.

The mathematics used in these developments are based on the general ther­
modynamical theory of actions developed by Coleman and Owen (1974,1975,1977), which
is summarized-in a way slightly different from usual-in Section 2. Mathematical objects
are introduced which have the structure of the typical instruments of continuum mechanics
(work, energy, etc) and are independent of a specific expression related to a rheological or
a mechanical (internal variables, microstructured continua, ...) model. For example, in
order to fix the dissipative nature of the internal work it suffices to use an object that has
the general properties of the work without assuming a specific form for it.

It is thus possible to formulate (in Section 3) five general axioms for the whole CDM,
and prove a number of other propositions. The Palmgren-Miner's rule for fatigue is used
in Section 4 as an illustration of the possibilities of the proposed formulation.

2. BASIC ASSUMPTIONS AND DEFINITIONS

In this section, relevant concepts and definitions formulated by Coleman and Owen
(1975, 1977), necessary for further developments, are explicitly presented, together with the
formalism used in the present paper.

2. I. States and processes
The finite set of independent fields which describe a continuous body, ff4, at a given

instant t is called its state and indicated by (J. For instance, in an internal variable model
for brittle thermoelastic solids with isotropic damage, (J is the three-plet of fields

(J = (F, e, D) (I)

in which F, eand D are, respectively, the field of the deformation gradient, of the absolute
temperature, of the scalar damage; in models with microstructure for ductile solids with
microcracks, (J can be defined as

(J = (E, EP, e, %) (2)

in which E is the field of the deformation tensor, EP the field of the plastic deformation
tensor, ehas been already defined, JV' the dipole approximation of the microcrack density
function (Lubarda and Krajcinovic, 1993; Augusti and Mariano, 1995).

Note that, differently from Noll (1972), (J is defined as the state of the whole body, not
the state of a point of the body. It is a point of a functional space L, called the state space,
which by assumption has at least the trivial topological properties necessary for simple
operations to make sense.

The interaction of the body, ff4, with the external environment is represented by a
process P = p t

, tE [0, dp ], i.e., an operator that acts on 1: during a finite time interval [0, dp ].

For instance, P can be a deformation, a load, a thermal history etc. With reference to
internal variable models, P accounts only for the modifications of observable variables due
to interference with the external environment. P cannot represent, for example, an internal
variable history. The set of all possible P is indicated by n.

Every process P maps L into itself:

P: D(P) -> R(P); D(P) s::; L; R(P) s::; L.t (3a,b,c)

A generic process P induces in 1: a state transformation pp, i.e., a change from the

t D(P) and R(P) are the domain and the range of P, respectively.
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stress

strain
Fig. 1. Monoaxial stress-strain relationship for elastic-perfectly plastic materials: the bold line is

the set of all base states.
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initial state a to a final state Ppa at t = dp. pp,a represents the path induced in L by P from
a, i.e., the set of all states encountered during the state transformation. It represents the
thermodynamics evolution of the body (!J, subjected to P.

For the pair (ll, L) two fundamental properties are required.

(I) Approachability: there exists at least a state ij such that it is possible to approacht
from it any state in L. In symbols: there exists ij such that the set

deCnO' = {ppO'I PEn, O'ED(P)} (4)

is dense in L.
Each state like ij is called a base state for the space L (a very simple example is shown

in Fig. 1).
(II) Composition of the processes (e.g., superposition of loads) : in the set

deC
f!j! = {(P", P') E II X n ID(P") nR(P') =1= 0}

there exists a map from n x n into n, (P", P') --> P"P', such that

D(P"P') = pp' I (D(P") nR(P'))

and VaED(P"P' ), Pp"ra = PrPra.
It is also understood that the processes are applied in succession to the body.

(5)

(6)

2.2. Actions
All functionals like power, work etc. which associate a real number to each path in the

state space, can be considered as particular cases of the general concept of action. In fact,
given the set of compatible pairs (P, a), indicated by n OL and defined by

deC
nOL = {(P, a) Ell x L IaED(P)} (7)

a real functional a(', .) : noL --> flit is called action if it satisfies the following properties:

(a) Additivity with respect to the composition of processes, i.e.,

a(P"P', a) = a(P', a) +a(P", Pra) (8)

with (P",P')Ef!J and aED(P"P').
(b) Continuity with respect to the states, i.e., a(P,') : D(P) --> flit is continuous, for any

PEn.

t For a rigorous mathematical definition of approachability see Coleman and Owen (1974,1975,1977).
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For a body that can be described by the displacement field and its gradient only (simple
body (Noll, 1972», a(',') can be

(9)

in which T R is the stress tensor, T R : F the power density of internal forces and b' v is the
power density of the body forces, b.

For a damaged body, with reference to a model with internal variables and in the case
of small deformations, a possible a(',') can be expressed by

in which T: E is the power density of internal forces, Ty the yield stress, p the time rate of
accumulated plastic strain, X 00 the kinematic hardening material parameter, XD the tensorial
kinematic hardening stress variable (Lemaitre, 1992).

If an action is approximately positive when calculated along paths which are quasi­
cycles starting from a given state U or, more formally, iffor any 10 > 0 there is a neighborhood
of u, I(u) , such that whenever ppUE/(u), a(P,u) > -10, then a(',') is said to have the
dissipation property at the state u.

An action a(',') has the conservation property at the state u if its value is zero on all
cycles at u.

2.3. Potentials
The internal energy is a potential for a specific action. In the same way the entropy is

a lower potential for another specific action; i.e. the difference between the value of the
entropy in the final state PpU of a path and its value in the initial state u is smaller than the
action calculated along the same path.

Formally, a function Z: ~ --+ fJ1t is a lower potential for an action a(',') if

(1) the domain of Z is dense in ~;

(2) "lUI and U2 E~, and VB> 0, an open neighborhood l(u2) exists such that, for every
P such that PpUj E/(u2) the inequality

(II)

holds.
In the state space ~, each constitutive equation is represented by a map on ~ x n which

takes values in an appropriate functional space. For example, in the Cauchy continuum the
stress tensor T is represented by a map from ~ x n into the space of the second order
symmetric tensors.

3. AXIOMATIC FRAMEWORK FOR DAMAGED MATERIALS

By using the concepts and definitions of Section 2, five axioms can be formulated and
related theorems demonstrated: these form a basic framework for damage theories,
sufficient to justify some assumptions underlying usual damage models. The five axioms
are elementary physical requirements which are, explicitly or implicitly, at the basis of all
damage models.

However, it has not yet been demonstrated that they form a sufficient minimal set of
aXIOms.
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3.1. Admissible states
For a given body, let an admissible state be a state not violating an appropriate failure

criterion.
The set of admissible states is indicated by d.

Axiom 1 (Closure of the admissible set of states): .91 is a non-empty proper
subset on:, closed with respect to the topology in which the stress mapt T(P, u)
is uniformly continuous with respect to the states.

The boundary ofd is constituted by the ultimate states considered for the body. For
example, the boundary ofd can represent the loss of integrity of the body. In this way the
boundary of .91 represents an ultimate condition of failure, beyond which the analysis of
the body in the form considered in .91 does not make sense. It is fundamental to note that
admissible regions defined by damage potential surfaces (as in current technical literature)
are proper subsets of d.

Axiom 2 (Axiom of integrity) : The set of all base states of L is in d. Such base
states are attainable from each other in reversible manner.

Axiom 2 establishes the existence in .91 of at least one state which can undergo any
type of damage. The existence of base states outside .91 is physically unacceptable with
respect to the described phenomenon.

In the following, the symbol {a" -> f} represents the set of all real values of the action
a(', u) calculated along all possible paths in .91 starting from u E .91 and going in f, a proper
subset of d.

Axiom 3 (Energy and dissipation to failure): The energy required to let the
body fail (i.e., to bring it outside d) is finite; in this state transformation the
variation of entropy is also finite.

Formally this Axiom can be expressed in the following way: two actions
exist, a'(',') conservative and aU

(",) dissipative, both at the base states (i.e., the
first and the second law of thermodynamics); each of these actions is inf­
boundedt, i.e. :

and

linf {a~ -> ad} I < OCJ

linf{a~ -> ad} I < CJJ.

(12)

(13)

The previous property is valid for all paths (the actions are considered classically
as line integrals along state transformations) that connect pairs of states which can be
approachable each other in d.

3.2. Damaging processes
In the following, p- 1 indicates the inverse process, e.g., the load process with reversed

sign, the cooling process etc. (formally p- 1 = p<dp-t) , tE [0, dp ]); while Pre! indicates the
relaxation process of the body, i.e., pP"p = A(U), where A(U) is a relaxed state with respect
to the removing of the applied process P (see DeL 6.1 and DeL 7.1 by Coleman and Owen
(1974) and Axiom V by Noll (1972)).

t t associates to every state (J the stress tensor field T related to P. In the case of a microstructured continuum,
the stress map associates to every state (J the pair (T, J) in which T is the macrostress and" the microstress acting
on the microstructure (Capriz, 1989).

t Actually, it is only possible to assume the existence and inf-boundedness of a'(','): in fact, it is very simple
to demonstrate in such conditions the existence of natural entropies which can be defined without resorting to an
assumed probability measure and calculated along paths representing state transformations of damage evolution
(Mariano, 1966b).
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Moreover, the set of cyclical processes is represented by

del
(n01:)cyci = {(P,O") [(P, 0") En01:,ppO" = O"} (14)

Definition 1. The process PEn, starting from a given state 0"0 E d (where d is the
interior of d) is a damaging process with respect to the action a(', '), if

(a) the process and its reversal, after relaxation, are not cyclical, i.e.,

(15a,b,c)

(b) the minimum amount of energy required for the body failure, from the final state
of the process, is smaller than from the initial state 0"0, i.e.,

inf {a"o --> ad} ~ inf {a", -> ad} (16)

where 0"2 = Pp-lpO"O, or 0"2 = PP,dPO"O'
The equality sign holds when both "inf' are equal to zero.
In the following, pO indicates either p- 1 or Preb and n° indicates the set of damaging

processes.

Axiom 4 (Possibility of damage): A body can be damaged starting from any
state and it is not possible to return in d (restoration) once out.
Formally
(i) VO"Ed, :JPEn such that O"ED(P) and ppO"Ead; and
(ii) VO"Ed, if PPII~t(JEd, then PPII~rO"Ed, vr~ i ~ dp. If P is such that
ppO"Ead, then PEn°.

Axiom 4 excludes from this treatment mechanical processes involving restorations,
neither phase-transitions of first order (e.g., melting or reforming), nor gluing or welding
processes, that would modify the original nature of the body.

Theorem 1. VPEn° and O"oEd, Va(',') for which inf {a"o --> ad} and inf {a", --> ad}
exist and are finite, being 0"2 = PpO pO"0, a(PO P, (Jo) enjoys dissipative features with respect
to process pOP, i.e.,

(17)

Proof. Because of the triangular inequality, for the definition of inf

(18)

Now, for the definition of the damaging process PE n° and Axiom 4

(19)

The real number a(pOP, 0"0) is an element of the set {a"o --> 0"2}' •

Definition 2. Consider two states, 0" and 0"'; 0"' is said to be a damaged state with
respect to 0" if 0" and 0"' can be connected by at least one path induced by a process which
causes damage; i.e., if there exists PE n° such that ppOpO" = 0"'.

Axiom 5. If 0"' is a damaged state with respect to 0", 0"' is attainablet from 0" only
by means of damaging processes such that ppOpO" = 0"'.

t Because of the "physical" point of view adopted in this paper, only perfect approachability, i.e., attainability,
is considered. Other possible weak forms of approachability can be considered in order to obtain greater generality.
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Fig. 2. Projection of the path onto the state variables subspace (schematic).
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3.3. Measures ofdamage
The damaged state is described by a field or set of variables in both the internal variable

and the microstructured models. Indicating with r,' the subspace of r, including all state
variables (considered as fields) which describe the damaged state, a projection TeD can be
considered, which selects the fields which describe the damage in the n-plet (J. It projects all
paths in d on the subset of d, indicated by d', which is in r,' (see Fig. 2). If ppa is a final
state of a state transformation PP:

if3P - 1 such that P p-' P p(J = (J

in all the other cases.
(20)

Nothing can be said about the projection of states which cannot be attained from each
other at least in one sense, since their projection can coincide or differ. A criterion of
distinction is given in the following where the symbol [{au ~ f} ITeD] indicates the set of
all values of a(o, 0) calculated on the projection of the paths Ppt(J (starting from the state (J

and going into the states in f, being f a subset of sil) on the space r,' t1 d = d'.
Proposition 1. Let PEn° and (Jl = PpOp(J then

inf[{a: ~ ad} ITeD] > inf[{a~popu ~ ad} ITeD]

inf[{a~ ~ ad} ITeD] > inf[{a~popu ~ ad} ITeD]'

(21)

(22)

(23)

In other words it is required that the amounts of energy and entropy necessary to bring
the state PPOp(J (damaged with respect to (J) onto the ultimate region ad are smaller than
those starting from (J.

Moreover, TeD must be such that

(24)

(25)

The same level of damage is associated to two states (J I and (J2 if

inf[{a~, ~ ad} ITeD] = inf[{a~2 ~ ad} ITeD]

(26)

(27)
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while rJ2 is a damaged state with respect to rJ I if

inf[{a~l -+ ad} I1tD] > inf[{a~2 -+ ad} I1tD]

inf[{a~l -+ ad} I1tD] > inf[{a~2 -+ ad} I1tD].

(28)

(29)

(30)

This statement holds even if they cannot be attained from each other at least in one
sense.

In this way, the projector 1tD establishes in d a partial order relation with respect to
the damage. In this way, equal damage sets with respect to the energy and to the entropy
can be recognized in the space d. These sets are generalized damage level surfaces.

By using the projector 1tD, it is possible to recognize that the composition between a
cyclical process and a damaging process is a damaging process as shown by the following
theorem.

Theorem 2. Let P be such that p- 1 exists and (P-1p, rJ) E(llOLLycl, \:trJEd. If PEllo,
then

(31)

(32)

Proof. Let PI = PP be a process with P and P as defined above. Then, assuming
p- I = pOt

(33)

Ifthe action a(o, 0) satisfies the hypotheses ofTheorem 1, the following inequality holds

(34)

As a consequence, rJ' = Pri1plrJ is a damaged state with respect to rJ. Thus, because of
Axiom 5, PI Ello.

Now, if PI = PP, the following equations can be obtained

(35)

(36)

and, because PEllo,

(37)

As a consequence, PPgP2rJ is a damaged state with respect to rJ and hence, for Axiom
5,P2 Ello.

The same result can be achieved also when ppoppprJ¢.D(P- 1
). •

Theorem 2 permits to introduce in II some algebraic structures in the state space L
and to affirm that states which are approachable one another by reversible (elastic, in
particular) state transformations have the same possible damaged states. The latter state­
ment is formally formulated in the following Corollary.
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Corollary. IfInv(O") is the set defined as
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i.e., the set of all states approachable from 0" by a reversible process, then, "to"' E Inv(O"),

(39)

where

(40)

This Corollary is an obvious consequence of Theorem 2.
In this way every damaged state can be considered as an equivalent class of states with

respect to reversible state transformations.
In most damage models in technical literature a damage potential is assumed to exist

and is used in analogy with the theory of plasticity. In the present context, the following
Theorem can be formulated on the above subject.

Theorem 3. The quantity

(41)

is a semimetric in d and is equal to the variation of a weak lower potentialt for all the
actions a(',') when they are calculated on the process plJP, PE ITo, and fulfill the hypotheses
of Theorem 1.

Proof. Axiom 3 and definition of ~(',.) yield

(42)

and ~(O"j, 0",) = O.
Moreover, putting inf; = inf {a<1, -+ ad}, and assuming 0"" (J2, (J3 E d,

i.e.,

(44)

With regard to second part of theorem in concerned, since ~(',.) is defined on the
whole d for Axiom 4, it suffices to note that, if (J2 = PpOp(J, and PE ITo,

(45)

then, because of Def. 1 and Th. 1,

t The word weak is used in order to take into account that the domain of the potential considered coincides
with the whole .PI and not with 1:.
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(47)

Thus, in agreement with the definition of lower potential given in Section 2, the
existence of a real function Z(o), defined in the whole d and such that

(48)

can be shown.
Z(o) is a lower potential for the action a(P!P, 0) with respect to the space d. •
Another result strictly connected with the assumption of the current damage models

can be obtained in the present context. Namely the existence of a real positive number Au
that bounds the damage energy from below.

The quantity Au, defined by

o< Au = inf {a~ --+ d} < 00
pO p,PErrO

(49)

is associated to each state (J.

A" is the minimum energy necessary to damage the state (J according with Definition
I and hence it can be called lower bound of damage energy.

A" and the set of all states which can be approachable starting from (J in a reversible
way, Inv(J), are related by the following theorem.

Theorem 5. V(J2 EInv(Jl)

(50)

Proof. Let (Jj, (J2, (J3 be state such that (J2EInv(JI) and (J3EIl°(JI == Il°(J2'
(J3 = Pp?p, (Jl = PPgP

2
(J2' For Axiom 4 and the properties ofconservative actions the equality

(51)

holds.
By substituting (50) into the triangular inequality

(52)

the following inequality

(53)

holds.
Becauseofinf{au,--+(Jd ~OforTheorem1,

So, Theorem 5 is proved.

(54)

•
4. AN EXAMPLE: GENERALIZED PALMGREN-MINER'S RULE

A generalized form ofthe well-known Palmgren-Miner's empirical rule can be obtained
in the present theoretical context.

On the basis of experimental results of fatigue tests on metal specimens, Miner (1945)
developed a hypothesis by Palmgren and stated that a process composed by n cycles type
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Fig. 3. Scenario of the Palmgren-Miner's rule.

A I and m cycles type A 2 lead to failure when

n m
-+-= 1
N M

(55)

where Nand M are the numbers of cycles respectively of type A 1 and A 2 that independently
cause the failure of the specimen. This law holds, approximately, if the cycles are not
correlated with each other and the dissipated work is the same in every cycle of the same
type. These hypotheses are very strong from a theoretical point of view because the physical
behavior is much more complex. However, the Palmgren-Miner's rule is currently used for
design purposes in engineering practice because of its simplicity.

In the present Section, the Miner's rule is reformulated in the framework of the
preceding axiomatic theory but shown to be slightly on the unsafe side. Because of the
generality of the used formalism, this derivation holds for cycles of arbitrary type (not only
stress or strain).

Consider two damaging processes PI and P2 such that

(1) each process can be applied repeatedly, i.e.,

D(P\) nR(P) -# 0

R(P\) nD(P2 ) -# 0

D(P2 ) nR(P2 ) -# 0

(56)

(57)

(58)

(2) the action value in each process is the same for any process of the same type, i.e"

(59)

(60)

where Nand M have been defined above.
Property 2 holds for at least one of the actions of Axiom 3.

(3) Another strong assumption is that the processes do not interfere with each other.

Now, let r = PP ... P, n times, and

Action additivity and assumption 2 above allow us to write
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a(P, (J0) = a(P7, (Jo) +a(P'2, (Jo) +a(P, PP'2'P?(Jo)

= na(P1, (Jo) +ma(P2, (Jo) +a(P, PP'2'P?(Jo). (61)

(62)

(63)

(64)

the attainment of an unstable microcracking state (J4 E 0.91 implies

n m
-+-= 1-1}
N M

with

(65)

(66)

because m can be chosen such to minimize I}.

Equation (65) is the generalized Palmgren-Miner's rule which is valid in the hypotheses
1,2,3: when I} = 0, it coincides with the original eqn (55).

The result can be generalized considering instead of two processes PI and P2 two sets
of processes, {P;}, i = 1... N; {Pi},.i = 1... M such that

D(P;) nR(P;_ d "# 0

D(Pj) nR(Pi-l) "# 0

U[D(Pj) nR(P;) "# 0
lJ

and, put (Ji = PPi .r, (J 0 and (Jj = PPj...r; (J 0 such that

(67)

(68)

(69)

(70)

(71)

This last property relaxes the classical assumption of equality of works in the previous
treatment.

Now, let E;.((Jo) be the set defined below

def
E; ( (J0) = {(J Iinf{a"0 -4 (J} = AE 9f, 0 < A < oo}. (72)

With reference to Fig. 3 and putting (Jl = PP:, .r,(Jo, (J2 = Pp',;"r;(Jo, (J3 = Pp~r,(Jo,

(J I = PpPP;"H'.P', (J0, the following inequality holds

If (JI, (J2, (J4EE;((Jo), the properties of {P;} and {Pi} can be used to show that the
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yielding of the state 0'4, according with the procedure described above, implies

with

3349

(74)

(75)

5. CONCLUDING REMARKS

As recently state by Krajcinovic (1995), so far "little if anything has been done to
formulate the axiomatic structure of Damage Mechanics". This paper intends to be a
contribution in this direction: the proposed axiomatic construction provides a tentative
framework to rationally establish some common fundamental properties of the models that
have been developed in the existing literature on CDM. Although the theory presented is
not yet exhaustive and requires further developments, the results illustrated in previous
Sections have great generality and provide theoretical basis for many assumptions which
are in damage models.

In a follow-up paper, Mariano (1996c) shows that this axiomatic framework is also
useful to describe the behavior of elastic plastic materials. In particular it is emphasized
that some of the foundations of the plasticity theory can be placed in a natural way into
the present structure.
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